
BNL-67115
CAP-269-Muon-00C

Acceleration for a High Energy Muon
Collider

J. Scott Berg

Brookhaven National Laboratory; Building 901A; PO Box 5000; Upton, NY 11973-5000

Abstract. We describe a method for designing the acceleration systems for a muon collider,
with particular application and examples for a high energy muon collider. This paper will
primarily concentrate on design considerations coming from longitudinal motion, but some
transverse issues will be briefly discussed.

INTRODUCTION

The cost of a high energy muon collider will be clearly be dominated by the
cost of accelerating the muons to their maximum energy. It is thus important to
study possible techniques for acceleration, the advantages and disadvantages of
these techniques, and how to perform a cost optimization of a final design.

The acceleration of muons poses various challenges that that are not present in
the acceleration of other types of charged particles. Since muons have a finite life-
time (approximately 1000 turns), one cannot take a long time to accelerate them,
so traditional accelerating synchrotrons such as are used for protons cannot be
used. Due to the difficulty of cooling the muon beam, the longitudinal emittances
tend to be large (as high as 0.047 eV-s), and this ends up making the acceleration
significantly more challenging, especially at lower energies.

The larger mass of the muons (as compared to electrons) prevents them from
emitting substantial amounts of synchrotron radiation, and thus there is nothing
preventing them from being bent in an arc. While a conventional synchrotron will
not work, a recirculating accelerator is certainly possible. An additional advantage
of a recirculating accelerator is that it potentially gives high RF-to-beam power
efficiencies, since the same linac can be used for multiple passes through the system.

Design Parameters

Table 1 gives parameters for high energy muon colliders that are relevant to the
design of the acceleration systems [1, 2]. In that table, pmin is the momentum at
which acceleration begins, pmax is the momentum in the collider, εL is the longitu-
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TABLE 1. Parameters for various high energy muon colliders.
pmin pmax εL εn N

MeV/c TeV/c meV-s µm 1012

186 0.5 24 50 4
186 10 21 38 3
186 100 47 8.7 0.8

dinal emittance (normalized), εn is the normalized transverse emittance, and N is
the number of particles per bunch.

We will assume that maximum accelerating gradients and the rs/Q of the cavities
scale with frequency according to

v = 30 MV/m

√

f

800 MHz

rs

Q
= 1000 Ω/m

f

800 MHz
, (1)

where f is the RF frequency.

METHODS FOR COMPUTING PARAMETERS

This paper will primarily address how to compute longitudinal parameters, but
will include very rough estimates of transverse parameters for the design. There are
really two types of systems that will be considered: straight linacs and recirculating
accelerators. Straight linacs are used for acceleration from the lowest energies, since
the relative energy spreads at lower energies will be impossible to get through a
conventional arc. Once the beam reaches a sufficient energy, however, recirculating
accelerators will be used.

Straight Linacs

At the lowest energies, the velocity of the particles cannot be considered to be
constant, and thus it is probably best not to accelerate on-crest; instead, one should
allow particles to undergo synchrotron oscillations, with the time-of-flight variation
coming purely from the velocity variation with energy.

As a first approximation to the behavior of synchrotron motion in the linacs,
we can take an adiabatic approximation wherein the RF bucket is determined by
the sinusoidal RF fields and the velocity variation of the muons with energy. The
smallness parameter in the adiabatic approximation is the quantity

1

ksp

dp

ds
, (2)

where ks is the synchrotron wave number (computed later), p is the muon momen-
tum for the reference particle, and s is the distance along the reference orbit. It
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will turn out that this quantity is not in fact very small; however, lacking a better
analytic description, one can nonetheless use the results under the adiabatic ap-
proximation to give a first (probably optimistic) guess as to what the parameters
may be.

One could consider running on-crest at some point during the acceleration pro-
cess, particularly once the adiabatic approximation becomes particularly bad. This
will first of all necessarily lead to some longitudinal emittance growth. Further-
more, it will be necessary to introduce some momentum compaction to counteract
the effect of the velocity variation with energy, but doing that for a beam with the
relative energy spreads that this beam will have would be highly nontrivial.

Hamiltonian Description

The Hamiltonian describing longitudinal particle motion in the linac is

− 1

c

√

[E0(s) + ∆]2 − (mc2)2 +
E0(s)∆

p0(s)c2
+ p0(s)

+
qv

(

s, t0(s) + τ
)

ω

[

sin
(

ω[t0(s) + τ ] + φ
(

s, t0(s) + τ
)

)

− ωτ cos
(

ωt0(s) + φ
(

s, t0(s) + τ
)

)

− sin
(

ωt0(s) + φ
(

s, t0(s) + τ
)

)

]

, (3)

where E0(s) is the energy of the reference particle, p0(s) =
√

E2
0(s)− (mc2)2/c is

its momentum, and t0 is its arrival time at longitudinal position s in the linac. The
particles have mass m and charge q. The gradient and phase of the fundamental
mode with frequency ω at longitudinal position s and time t are v(s, t) and φ(s, t)
respectively. These quantities are related through

dt0
ds

=
E0(s)

p0(s)c2
dE0

ds
= qv

(

s, t0(s)
)

cos
(

ωt0(s) + φ
(

s, t0(s)
)

)

(4)

The canonical coordinate is τ for the deviation of the arrival time at a given longi-
tudinal position s of a particle from that of a reference particle, and the canonical
momentum is −∆, where ∆ is the deviation of the energy of a particle from that of
the reference particle. The Hamiltonian ignores effects of beam loading, and only
considers the effect of the fundamental mode in the linac.

The reason for putting time dependence in v and φ is to take into account power
input, wall losses, and in principle beam loading (although the latter really requires
a self-consistent solution, but the average effect could be put in). Except for beam
loading, these time variations occur over time scales which are long compared to
the time that it takes the bunch to pass by a given point in the linac. Thus, for
the purposes of this discussion, the time dependence will be ignored.
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It will be convenient to define an effective phase of ψ(s) ≡ ωt0(s) + φ(s). The
adiabatic approximation is really an assumption that v(s) and ψ(s) change very
slowly. “Very slowly” must be in relation to some other time scale, and it turns out
that this time scale is really defined by the quantity (2) being small (this will not
be demonstrated here). The adiabatic approximation is computed by performing
calculations as if v(s) and ψ(s) were in fact constant. The idea is that synchrotron
oscillations are occurring so rapidly the v(s) and ψ(s) really are nearly constant
over the period of a synchrotron oscillation.

There are of course variations in v(s) due to the fact that the fields amplitudes
not constant over the length of a cavity cell. For these variations, one can make
another adiabaticity argument: as long as the variation in particle energy and
arrival time offset is small over the length of a cavity cell, the average value of v(s)
can be used.

Thus, these two adiabaticity arguments allow us to remove the s dependence
from v and ψ in subsequent discussions, and the results will be valid to the extent
that the adiabaticity arguments are valid.

Linearization

There are two periodic sets of fixed points of the above Hamiltonian: one set
with ∆ = 0 and ωτ = 2πn, the other set at ∆ = 0 and ωτ = 2πn − 2ψ, where n
is an integer. As long as ψ < 0, the fixed point at τ = 0 is stable. Linearizing the
Hamiltonian about that fixed point, we get

1

2

(mc2)2

c(p0c)3
∆2 − 1

2
qvω sinψ τ 2 (5)

From this, we can compute the square of the aspect ratio of a matched beam to be

σ2
∆

σ2
τ

= −qcvω(p0c)
3 sinψ

(mc2)2
(6)

and the square of the synchrotron wave number ks (2π divided by the synchrotron
wavelength) to be

k2
s = −qvω(mc2)2 sinψ

c(p0c)3
. (7)

Here σ∆ is the RMS energy spread, and στ is the RMS bunch length in arrival time
units.

Bucket Area

The Hamiltonian (3) can be used to find an equation describing the separatrix
of the RF bucket. The separatrix contains the unstable fixed point at ωτ = −2ψ,
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and the Hamiltonian has a value of

2qv

ω
(ψ cosψ − sinψ) (8)

at that point and therefore along the separatrix. The separatrix at τ has the energy
deviation values

∆ = E0w ± p0c
√

2w + w2 (9)

w =
qvp0c

2

(mc2)2ω
[(2ψ + ωτ) cosψ − sin(ψ + ωτ)− sinψ]. (10)

From this, the half-width of the bucket can be computed to be

2p0c

√

qvp0c
2

(mc2)2ω

√

ψ cosψ − sinψ

√

1 +
qvp0c

2

(mc2)2ω
(ψ cosψ − sinψ). (11)

Now one might want to ask how large a bunch the bucket can hold. This should
really be computed by computing the area of the RF bucket directly. However,
a simpler method can be used which is approximately correct. Take the bucket
half-width to be kσ∆, where k is an arbitrary factor indicating how full you would
like the bucket to be. This gives an expression for σ∆. Next, use the aspect ratio
(6) to compute στ in terms of σ∆. The product of στ and σ∆ is the longitudinal
emittance εL, and thus we have another expression for σ∆. Equating these two
expressions for σ∆, we get a relationship between the longitudinal emittance that
the bucket will hold and the bucket and beam parameters. The result is

4

k2

p0c

ω

√

qvp0c
2

(mc2)2ω

ψ cosψ − sinψ√
− sinψ

[

1 +
qvp0c

2

(mc2)2ω
(ψ cosψ − sinψ)

]

= εL. (12)

Decay Losses

It is well known that for decaying particles at constant velocity, if they travel a
distance s, the number of particles N at the end of that distance is related to the
number N0 at the beginning of that distance by

N = N0e
−sm/pτ (13)

where τ is the lifetime if the particles in their rest frame and p is the particles
momentum.

When the particles are undergoing constant acceleration parallel to their mo-
mentum, a calculation is necessary. Integrating

dN

ds
= −m

pτ
N (14)
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FIGURE 1. Accelerating gradient as a function of momenta for various RF frequencies, using
0.5 TeV/c parameters.

when the energy varies according to

dE

ds
= qv cosψ, (15)

the result is

N = N0

(

E + pc

E0 + p0c

)

−
mc

τqv cosψ

, (16)

where E is the final energy of the particles, p is their final momentum, and the 0
subscripted numbers are the initial quantities.

In principle there may be corrections that come about from the finite energy
spread in the distribution, but these will not be treated here.

Linac Designs

To apply this to the design of the initial linac for a muon collider, one can take
the longitudinal emittance of the beam, choose a value for k, choose a frequency
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FIGURE 2. Accelerating gradient as a function of momenta for various RF frequencies, using
10 TeV/c parameters.

ω and its corresponding gradient v, and use (12) to solve for ψ as a function of p0.
Since the synchronous phase gives the effective accelerating gradient, one thus has
the maximum accelerating gradient one can achieve for a given beam emittance
and linac parameters as a function of beam momentum. One can plot this for
various RF frequencies, and the results are shown in Figs. 1–3. For those figures,
a value of 4 was chosen for k, and a linac filling factor was assumed to be 0.65
(thus, the maximum average accelerating gradient is really 0.65 times the value
from (1)).

Using these plots, one can come up with a scheme for accelerating the bunch in
a linac. Assuming that the bunch shape adiabatically follows the bucket, and that
one varies the phase of the RF along the linac to keep the bucket area constant,
then Figs. 1–3 really do show the gradient in the linac as a function of reference
momentum. To minimize decay losses, one wants to have the highest gradient
possible for a given momentum. Thus, one should switch from one frequency
linac to the next when the reference momentum reaches the value where lines for
adjacent frequencies cross. One would like to minimize the number of different
frequency RF systems used; examining the graph, this suggests that maybe one
should choose to jump in frequency by a factor of 4 from one linac to the next.
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FIGURE 3. Accelerating gradient as a function of momenta for various RF frequencies, using
100 TeV/c parameters.

TABLE 2. Parameters for linacs accelerating to 4 GeV.
pmin pmax f L στ,in στ,out σ∆,in σ∆,out Decay

GeV/c GeV/c MHz m ps ps MeV MeV %

0.5 TeV/c Parameters
0.186 0.68 50 147 1232 536 19 45 6.5
0.68 2.10 200 211 280 136 86 176 2.8
2.10 4.0 800 166 71 47 336 511 0.9

10 TeV/c Parameters
0.186 0.62 50 125 1159 537 18 39 5.7
0.62 1.92 200 194 281 136 75 154 2.8
1.92 4.0 800 177 71 44 294 473 1.0

100 TeV/c Parameters
0.186 0.59 25 162 2257 1080 21 44 7.5
0.59 1.82 100 259 565 275 83 171 4.0
1.82 4.0 400 257 144 87 326 542 1.5

Using the graphs, the schemes suggested in Tab. 2 seem optimal.
The choice of a maximum energy for the linacs of 4 GeV is based on the fact

that the arcs for a recirculating accelerator are particularly difficult to construct for
energies below this, primarily because of the large energy spread and the require-
ments on the momentum compaction over the energy range that the arc accepts
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[3].
An analysis of the results from Tab. 2 suggests the following:

• The larger longitudinal emittances gives require substantially longer linacs,
and require those linacs to be at lower frequencies. This will substantially
effect the cost of such systems. The systems become more efficient and less
costly if the longitudinal emittance is reduced.

• There must be a longitudinal matching section from one linac to the next.
This matching section can in principle use the lower frequency linac itself.
However, these matching sections are potentially very long, and may require
momentum compaction to be generated using some sort of arc, which would
be difficult with these energy spreads.

Furthermore, it turns out that due to the fact that the adiabatic approximation
is not very good in this case, the bunch does not in fact re-orient itself in phase
space according to what was given in Tab. 2. The linear matching issues can be
corrected for, but it is important to study the phase space dynamics to determine
what the effective “bucket” is in this case. In addition, the asymmetric shape of
the bucket causes problems with matching in the tails of the distribution.

Recirculating Accelerators

Once the beam can be reasonably expected to pass through an arc, it becomes
more efficient to use a recirculating accelerator to accelerate the beam. A recir-
culating accelerator consists of two (or more) linacs, connected by one or several
arcs. The beam makes several passes through the linacs. This makes more effi-
cient use of the linacs and the RF power, at the cost of more decays and potential
complexity in the arc design.

Drift-Kick Map for Linac

In our coordinate system (τ,−∆), we represent the linear map for the arcs (plus
the drift behavior in the linacs) as

[

1 −D
0 1

]

, (17)

and the linear map for the energy kick from the linac as
[

1 0
qvLlinω sin φ 1

]

(18)

where Llin is the length of the linac, and φ is the RF phase of the reference particle
(same convention as previously). D is a parameter which will be discussed and
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computed later. Thus, the synchrotron tune for the drift-kick pair will be given
implicitly by

sin πνs =
1

2

√

qvLlinωD sin φ (19)

The minimum (at the center of the arc) RMS bunch length (in arrival time units)
will be

√

2 sin πνs

qvLlinω sin φ

√
εL cos πνs, (20)

and the maximum length (center of linac) will be
√

2 sin πνs

qvLlinω sin φ

√
εL sec πνs. (21)

Similarly, the minimum RMS energy spread (center of linac) will be
√

qvLlinω sin φ

2 sin πνs

√
εL cos πνs, (22)

and the maximum energy spread (center of arc) will be
√

qvLlinω sin φ

2 sin πνs

√
εL sec πνs. (23)

Hamiltonian Description

To obtain an RF bucket, one must construct an averaged s-independent Hamil-
tonian which behaves as if the accelerating gradient and the time-of-flight variation
are occurring simultaneously instead of sequentially. This Hamiltonian should have
the correct linear tune (as computed for the linear transfer map described above),
and correctly represent the nonlinearity in the RF. It can only correctly give the
matched beam ellipse at one point, since the matched beam ellipse varies with
position in the ring, while a time-independent Hamiltonian has the same matched
ellipse everywhere. Thus we choose an “averaged” matched ellipse for the Hamil-
tonian to represent: this is most easily chosen by replacing the cos πνs and sec πνs

in (20)–(23) with 1. The resulting Hamiltonian is

−1

2

πνs

sin πνs

D

Ltot

∆2 +
πνs

sin πνs

qvLlin

ωLtot

[sin(ωτ + φ)− sinφ− ωτ cosφ], (24)

where Ltot is Llin plus the length of the arc (which we will call Larc).
Following the same sort of procedure as we did for the linac, we find that the

longitudinal emittance accepted by the bucket is

εL =
2

k2

qvLlin |sinφ− φ cosφ|
ω sin πνs

. (25)

10



Linac Contribution to D

There are two contributions toD: one from the arcs, and another from the linacs.
The contribution from the arcs is well known and is described by the momentum
compaction αC . The trick is to characterize the contribution from the linacs. It
would be convenient if one could lump the contribution from the linacs in with
the contribution from the arcs. This is certainly feasible: if a Hamiltonian can be
written as H∆(∆)+Hτ (τ), a well-known technique in symplectic integration to get
a second-order accurate map is to integrate H∆ for half a length step, followed by
Hτ for a full length step, followed by H∆ for a half step [4].

Thus, we can use the linac Hamiltonian (3), and integrate only the part de-
pending on ∆. Using (4) and taking v and φ to be constant, we find that after
linearizing in ∆,

τ1 − τ0 =
1

qvc cosφ

(

1

β1

− 1

β0

)

∆, (26)

where the subscript 0 refers to the beginning of the integration, and the subscript
1 refers to the end. β is the speed of the reference particle divided by c. There
will thus be two contributions from the linacs to D: one from the linac before the
arc, where the initial condition in the above integration will be the center of that
linac and the final condition will be the end of the linac. Added to that will be a
second contribution from the linac after the arc, where the initial condition is the
beginning of the linac, and the final condition is the center of that linac. The net
result is that there will be a contribution to D which is

1

qvc cosφ

(

1

β2

− 1

β0

)

(27)

where the subscript 0 refers to the center of the linac before the arc in question,
and the subscript 2 refers to the center of the linac that follows the arc.

Arc Parameters

Given longitudinal design parameters, we now have what we need to specify
some basic arc parameters. From the previous discussions, D can be written as

D =
4 sin2 πνs

qvLlinω sinφ
. (28)

But from its basic definition, the definition of αC , and the above discussion, it can
also be written as

Larc

β2
1p1c2

(

αC −
1

γ2
1

)

+
1

qvc cosφ

(

1

β2

− 1

β0

)

. (29)
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Here the subscript 1 refers to the value in the arc itself, and γ1 = 1/
√

1− β2
1 . As

a result, we have an expression for αC in terms of longitudinal design parameters:

αC =
1

γ2
1

+
β2

1p1c
2

Larc

[

4 sin2 πνs

qvLlinω sin φ
+

1

qvc cosφ

(

1

β0

− 1

β2

)]

. (30)

The vertical RMS beam size is given by

σy =

√

βyεy
βγ

, (31)

where βy is the vertical beta-function and εy is the normalized vertical emittance.
Similarly

σx =

√

βxεx
βγ

+

(

Dxσ∆

βpc

)2

, (32)

where Dx is the horizontal dispersion function. Generally, to compute these values,
a lattice needs to be laid out. But one can get lower bounds by assuming a constant
focusing and bending channel, which would give

βx = βy = ρ
√
αC Dx = ραC , (33)

where ρ is the radius of curvature of the arc.

Supplying RF Power

In this paper, we will assume that power is supplied to the linacs in the recir-
culator in such a way as to precisely replace the energy removed from the linac
by the beam. Such a scheme has the advantage that the longitudinal phase space
for the beam can remain matched irrespective of the beam current, assuming that
sufficient power is available to make this scheme work for the highest expected
beam current. Other schemes, such as one where the stored energy in the linacs is
allowed to droop, potentially require that the arcs have different momentum com-
pactions depending on the current in the beam to achieve longitudinal matching,
potentially making it difficult to run at a current other than the maximum design
current.

This paper will make some simple assumptions about how RF power is supplied:
there are assumed to be no losses, either through the walls or into loads which are
put in for “matching” purposes. The RF simply stores energy into the linacs, and
that energy is extracted by the beam. This will necessarily produce the most opti-
mistic values for peak power requirements and efficiencies. More realistic scenarios
should be computed at some point.
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Peak power requirements are simple to compute: the beam extracts a certain
amount of energy, and that energy must be resupplied by time the beam comes
around again. One must take into account the fact that there are actually two
beams.

Efficiency is important for high energy machines, and this can be computed as
follows: the energy supplied to a beam of N particles over n turns through a linac is
nNqv cos φ per unit length. The energy stored in the linac initially was v2/ω(rs/Q)
per unit length, and we supplied Nqv cosφ per unit length (n− 1) more times, so
the total energy supplied is v2/ω(rs/Q)+(n−1)Nqv cosφ. The maximum possible
efficiency is therefore

ε =
nNqv cosφ

(n− 1)Nqv cosφ+
v2

ω(rs/Q)

. (34)

The real efficiency will of course be less than this, due to wall losses and loads,
plus efficiencies of the devices supplying the RF power.

Recirculator Designs

If we specify

• The synchrotron tune
• The total energy gain in the recirculator
• The gradient and frequency of the RF
• The number of turns in the recirculator
• The quantity k
• The longitudinal emittance

the above description tells us how to compute the phase at which we should run
the RF. While the synchrotron tune may seem like an odd quantity to specify, it
in fact makes sense to do so. A high synchrotron tune is advantageous for several
reasons:

• It gives a smaller energy spread in the beam (important for simplifying arc
design)

• It can minimize collective instabilities
• It can prevent degradation of polarization [5]

However, there is a maximum value for the synchrotron tune, which is about 0.15
per linac-arc pair. The reason for this is that the motion is in fact described by a s-
dependent Hamiltonian, and not the s-independent Hamiltonian (24). The bucket
computed for that Hamiltonian is only correct in the limit of small synchrotron
tune for the linac-arc pair. For a larger synchrotron tune, the edges of the bucket
will degrade until the bucket completely disappears at a synchrotron tune of 0.5.
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The source of this degradation is the nonlinearity from the RF. This suggests that
we try a synchrotron tune of 0.15 per linac-arc pair. For a racetrack design, this
corresponds to a one-turn synchrotron tune of 0.3. The racetrack design seems
most efficient in terms of avoid the overhead necessary at the entrance and exit
of each linac, but in principle a design with more sides would allow even larger
synchrotron tunes.

Using these constraints, we can come up with designs for the recirculators. One
can imagine that a collider will be built up by upgrading the machines over time,
essentially adding recirculating stages. The various machines might have single
beam energies of 70 GeV, 500 GeV, 10 TeV, and 100 TeV. Thus, the recirculator
stages will have maximum energies at these points.

Because any time spent in arcs is essentially lost (and gives excess decays), one
does not want to create a recirculator which is unnecessarily long. If one makes a
recirculator which works from 4 to 70 GeV, for instance, the arcs at 4 GeV will be
nearly as long as the arcs at 70 GeV, and a substantial number of excess decays
will occur. Thus, it is important to create even more recirculator stages. Around a
factor of 4 in energy per recirculator seems like a good compromise between decay
losses and excess hardware. Thus, a good set of cutoff energies for the recirculators
are starting at 4 GeV, then 17 GeV, 70 GeV, 190 GeV, 500 GeV, 2.2 TeV, 10 TeV,
32 TeV, and finally up to 100 TeV.

The question now becomes how to choose the appropriate RF frequency and
number of turns for the recirculators. For low energy recirculators, the length of
the recirculator is so short that a kicker to switch from one arc to another would
be at best very difficult. Therefore, the low energy recirculators tend to have their
number of turns limited by the requirement that the energy jump should be greater
than a few (8 is the choice made here) times the RMS energy spread in the beam.
This ceases to be an issue in higher energy recirculators.

These issues can be avoided completely if one goes to an Fixed Field Alternating
Gradient (FFAG) type of scheme, where a single arc is used for all passes [3]. There
are many problems with this type of arc:

• Making the bunch arrive at the right phase of the RF for each pass.
• Achieving a decent dynamic aperture and avoid emittance blowup.
• Creating the complex and often large magnets that are required.
• Creating the required momentum compaction as a function of energy.

The first problem, making sure the particles arrive at the correct RF phase, is
probably the most difficult of these problems. Possible solutions are to simply
supply the required RF power (which may be prohibitively large), to add some
ferrite or similar material which can cause the resonant frequency of the cavity to be
changed (which may give significant problems with losses and heating, particularly
in a superconducting environment), or to use other schemes to vary the resonant
frequency of the cavity.
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The next issue becomes the energy spread in the beam, which will turn out to
be very large. It turns out that in the low energy recirculators, the energy spread
is so large as to require FFAG-like arcs even when individual arcs are used for each
pass [3]. These arcs won’t have many of the problems of a single-arc design, but
are still very complex. It is clearly advantageous to reduce these energy spreads
if at all possible, if for no other reason than to reduce likely emittance blowup
caused by the energy spread. This requirement will tend to push you toward lower
frequency RF and more turns in the recirculator.

However, when one tries to design the arcs, one runs into another problem: the
momentum compactions required can easily become too large. Once the momen-
tum compaction becomes above around 0.03 or so, the arcs get very difficult to
design [3]. Lowering the momentum compaction tends to push you toward higher
frequency RF and fewer turns in the recirculator.

Higher frequency RF tends to reduce decays (higher gradient), tends to be more
efficient (less stored energy), is easier to create power for, and is in general less
expensive, but has higher wakefields (which can be a significant problem consid-
ering the high beam currents under consideration here). Going to more turns will
give more decays, requires more arcs in a multiple arc design and therefore is more
expensive, but will generally be more efficient both in terms of average power and
in terms of linac usage.

Table 3 contains values for recirculator parameters for these schemes. The arcs
are assumed to have 2 T average bending fields. In reality, the arcs may have
higher average bending fields in cases where the relative energy spreads are lower;
it would be nice to take this into account somehow in the computations, but it
is unclear how to do so. This is particularly important at higher energies where
the arcs get prohibitively long with 2 T average bend fields (the 2 T average field
is kept nonetheless for comparison purposes only). Larc is the length of 180◦ of
arc, and Llinac is the length of one of the two linac in the recirculator. Ppeak is the
power that must be supplied to replace the energy extracted by the beam at the
same rate the beam is extracting it.

These values were arrived at by various compromises. The values for the lower
energy recirculators are often forced. Going to lower frequencies requires momen-
tum compactions that are too high. Going to higher frequencies gives energy
spreads which are so large that they don’t even allow multiple passes. Generally
the number of turns is chosen to be the maximum allowable for passive switching
between arcs. Note the large relative energy spreads in these recirculators.

For the higher energy recirculators, there are more choices to be made, and
this is reflected in putting multiple lines in the table for a given energy range.
The highest frequency given is generally the maximum frequency possible, and the
number of turns is the maximum for that frequency. The relative energy spreads
are generally decreasing as we go up in energy, but it might be nice to further
decrease the relative energy spread so as to make the arcs easier.
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TABLE 3. Parameters for recirculators.
pmin pmax f n Larc Llinac στ σE Ppeak Decay ε αC,max σx σy

GeV/c GeV/c MHz m m ps MeV MW % % 10−3 mm mm

0.5 TeV/c Parameters
4 17 400 5 89 127 91 296 1156 3.7 13 14.88 9.6 1.5

17 70 800 11 367 169 47 579 864 4.8 48 4.04 4.3 1.0
70 190 800 12 996 312 37 720 734 4.0 54 2.63 3.4 0.9
70 190 1600 13 996 231 24 1143 723 4.1 79 1.05 2.2 0.7

190 500 1600 16 2620 430 19 1426 610 4.7 84 0.68 1.7 0.6
190 500 3200 17 2620 323 12 2278 595 4.8 97 0.26 1.1 0.4

10 TeV/c Parameters
4 17 400 6 89 107 92 255 797 4.0 11 17.7 9.5 1.3

17 70 800 13 367 144 47 501 575 5.4 45 4.73 4.3 1.0
70 190 1600 15 996 200 24 997 482 4.6 75 1.21 2.1 0.6

190 500 3200 19 2620 288 12 2006 404 5.3 94 0.30 1.1 0.4
500 2200 3200 19 11527 1277 7 3381 503 6.5 96 0.10 0.7 0.4

2200 10,000 3200 19 52396 5475 4 5540 511 6.5 97 0.04 0.5 0.3
100 TeV/c Parameters

4 17 200 5 89 179 181 291 186 4.6 1 29.93 17.6 0.7
17 70 400 11 367 238 93 570 153 5.4 6 8.15 8.2 0.5
17 70 800 5 367 364 45 1172 279 3.0 8 1.85 4.2 0.4
70 190 800 13 996 325 47 1126 134 4.4 17 2.11 4.1 0.3
70 190 1600 6 996 490 23 2305 259 2.3 22 0.49 2.0 0.2

190 500 1600 17 2620 455 23 2244 114 5.0 44 0.53 2.1 0.2
190 500 3200 8 2620 676 12 4568 226 2.5 54 0.13 1.0 0.2
500 2200 3200 23 11527 1163 10 5539 112 7.7 79 0.09 0.8 0.2
500 2200 6400 23 11527 920 6 9011 114 7.6 93 0.03 0.5 0.1

2200 10,000 6400 23 52396 3465 4 14352 117 7.6 95 0.01 0.3 0.1
10,000 32,000 6400 23 167668 9314 3 20033 104 6.6 95 0.01 0.1 0.1
32,000 100,000 6400 23 523961 27585 2 28993 103 6.5 95 <0.01 0.2 0.1

Thus, for the 0.5 TeV/c parameters, a lower frequency solution is given when
possible, with the number of turns chosen to have about as many decays as in the
higher frequency case. Note that the linac tends to get longer; this is probably
the primary cost of going to the lower frequency. There is also a slight decrease
in efficiency, which is significant but not terribly so. You are trading off the cost
of the linac (including its associated power) with the complexity of the arcs by
changing the frequency of the linacs.

The first four energy ranges for the 0.5 TeV and the 10 TeV parameters are
similar except for a small (less than 15%) change in the longitudinal emittance
(the transverse emittance also decreases somewhat). Note that substantial change
that can potentially occur in the linac length, energy spread, and peak power
requirement as a result. Thus, particularly for the lower energy recirculators, a
reduced longitudinal emittance can be of significant advantage in cost savings.

For the 10 TeV parameters, it turns out that an RF frequency of 6.4 GHz is not
workable since beam loading becomes too high with 3 × 1012 particles per bunch
(Eq. (34) gives a value greater than 1). Thus, for higher energies we continue to
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use 3.2 GHz RF. In reality, one can use an almost arbitrary number of turns at the
higher energies (above 500 GeV), since the relative energy spreads are relatively low
(allowing passive switching), and in any case active switching is probably possible
since the rings are much longer. 19 turns was chosen arbitrarily, basically to be
equal to the number of turns in the 190 GeV/c to 500 GeV/c recirculator. More
turns requires more hardware in a multiple arc system. The decay losses start to
rise in the higher energy machines due to the increasing length of the linac. The
relative small αC suggests that it may be advantageous to increase the number of
sides in the recirculator, allowing a greater synchrotron tune in the recirculator
(0.15 per side) and a correspondingly smaller energy spread. The bunch lengths
that come out of the calculation are also extremely short, and that is another
indicator that it would be helpful to increase the synchrotron tune in this fashion.
Many-sided designs will be considered in future work.

For the 100 TeV/c parameters, the longitudinal emittance has increased sub-
stantially, and so lower frequencies are often required than are required in the
other cases. However, for some of the lower energies, we have provided a higher
frequency solution that has a larger energy spread. The relative energy spread is
still smaller than it was for the previous stage, so the arcs would be no worse than
the arcs in the earlier stages. However, it would be nice to take advantage of the
lower energy spreads to construct simpler arcs.

For the 0.5 TeV/c to 2.2 TeV/c recirculator, the 6.4 GHz RF scenario is limited
to 23 turns for passive switching, but the maximum number of turns for the 3.2 GHz
RF scenario is much higher. Assuming we want to limit the number of turns to
limit decays and arc complexity, I have chosen to use a maximum of 23 turns here
and for subsequent recirculators. Also, it turns out that going above 6.4 GHz RF
leads to beam loading problems like those for the 10 TeV/c case, and thus we will
limit ourselves to this frequency.

Arc Design

Clearly one of the greatest challenges lies in the design of the arcs for these
recirculating accelerators. The arcs for the low energy systems must accept rather
large relative energy spreads, and this is the primary challenge. Arc designs for
these large energy acceptances are being considered by several people, including
Al Garren, Carol Johnstone, Dejan Trbojevic, Weishi Wan. In addition, these
same people are studying single-arc designs where the entire energy range of the
recirculator passes through a single arc. It may even end up making sense to have a
small number of arcs, where the beam passes through each arc a few times. One of
the greatest difficulties in these designs is meeting the requirements on momentum
compaction that come from longitudinal considerations, and many (but not all) of
these designs have yet to address this issue.

It would be particularly useful to get some kind of rough parameterization of
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how the dipole packing fraction and other parameters behave with respect to design
constraints put on the arcs.

Don Summers has come up with an idea for a different geometry for the recir-
culating accelerator, which has been called a “dogbone geometry.” The idea is to
have a single linac through which the particles pass, and have arcs on the end of
that linac which return the particles into the same linac. The advantage of this
scheme is that lower energy particles can go through a shorter arc than the high
energy particles, since the length of the arc is not determined by the distance be-
tween linacs. Such a scheme can allow one to reduce decays and/or reduce linac
costs in the recirculator. There are issues related to supplying RF power due to
the asymmetric way in which the bunches would pass through such a system, and
such a system cannot be expanded to many sides for the high energy recirculators,
but is certainly an attractive possibility for the low energy recirculators.

At higher energies, a scheme with ramping magnets has been considered for
the arcs [2]. While superconducting magnets cannot be ramped fast enough, it is
possible that normal conducting magnets could be. So a hybrid scheme is used
consisting of interleaved fixed-field superconducting magnets and pulsed normal-
conducting magnets. Such a scheme has yet to be examined carefully, in particular
the nature of the orbits has yet to be considered. It will have similar difficulties to
FFAG systems due to large orbit swings, but in principle it should be better since
there is an extra degree of control in the ability to ramp some of the magnets.

Arc designs will not be discussed in much more detail here. Their design is
progressing, and the status and other issues with their design will be reported on
in the future.

Other Issues

It is possible to use isochronous designs for the recirculators instead of these
designs with a finite synchrotron tune. The isochronous designs lack many of the
advantages of the non-isochronous designs: energy spreads will be larger, collective
instabilities are more difficult to control, and there may be difficulties preserving
polarization. In addition, an isochronous design will necessarily increase the lon-
gitudinal beam emittance, which is already problematically large (this effect is
particularly significant at the lower energies). Isochronous designs do have the
advantage that they eliminate one of the primary difficulties associated with a
single-arc recirculator, the issue of making the beam arrive at the correct phase
of the RF. Isochronous design principles will not be discussed here, but will be
treated in a subsequent paper.

Wakefields and their effects have yet to be computed for these kinds of systems,
but it is clear that they will be a significant effect, due to the large beam current.
At the higher energies, it is important to come up with a scheme which has longer
bunch lengths, since the extremely short bunch lengths given in Tab. 3 will create
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substantial wakefield effects. Going to many-sided designs should be considered for
these high energies, not only because of the short bunch lengths but also because
the synchrotron tune will be larger and therefore will more readily be able to correct
the strong wakefield effects that will occur.

CONCLUSION

We have described a method for designing the acceleration systems for a muon
collider. The design method is based primarily on considering the longitudinal
phase space dynamics of the bunch. The muons are initially accelerated in a linac
which most likely contain several frequencies of RF, and then are accelerated by a
series of recirculating accelerators. We have laid out what the parameters might
look like for various future high-energy muon colliders, and discussed some of the
tradeoffs involved.

The relatively large longitudinal emittances in a muon collider create significant
difficulties at lower energies. It requires low-frequency RF in the linac that ini-
tially accelerates the muons after the cooling stage, and also requires large energy
acceptance arcs in the early stages of recirculation.

Much work remains to be done. The studies of the arcs in the recirculators need
to be continued and expanded. The effect of wakefields needs to be considered.
Linac designs need to be looked at to determine achievable parameters as well as
wakefields. Multi-sided recirculator designs should be looked at, particularly for
high energies. Finally, much more work needs to be put into optimization of these
designs for cost and performance.

We have laid out a set of parameters for a high-energy muon collider which
does not appear to be unrealistic. With these parameters as a starting point, it
is possible to attempt to estimate the cost of the acceleration for a high-energy
muon collider, and from that determine what direction one should go to reduce
those costs.
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